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SUMMARY 

Non-Darcy groundwater flow parameters are identified for three different flow systems. In the first system, 
which is essentially one-dimensional, the parameters are determined by means of an integral method. A 
rectangular parametric grid is used for the identification of the non-Darcy friction coefficients in the second 
system, which is two-dimensional. The parameters in the third system, which involves a hybrid simulation of 
three-dimensional flow, are optimized by adopting a constrained non-linear programming technique. This 
technique combines Cauchy's steepest-descent method together with the modeller's subjective judgement of 
the results at the end of each iterative step. The paper is concluded with a brief description of the additional 
research which is thought to be necessary before the difficulties of optimizing the non-Darcy flow parameters 
can be overcome. 
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INTRODUCTION 

The accurate simulation of groundwater flow largely depends upon a set of coefficients which 
firstly characterize the internal structure of the porous medium and secondly reflect the properties 
of the fluid that moves through the granular matrix. The process of obtaining optimal values of 
these parameters is known as the inverse problem. In practice this amounts to determining optimal 
values for a number of aquifer parameters in order to achieve the minimization of a calibration 
criterion (or objective function) which is based on either the water levels or the flow differences 
between a mathematical model and the experimental or field data. 

There exist various approaches which may be adopted to solve this groundwater flow 
optimization problem. These are the direct,' linear,2,3 non-linear4-I2 and s to~has t i c '~  programm- 
ing techniques. The most widely adopted optimization method in groundwater flow modelling is 
the non-linear programming technique. The efficiency of various optimization methods has been 
compared by Yeh. l 4  Recently, Neuman' combined non-linear programming techniques with the 
Kriging method, which is a statistical technique akin to stochastic programming. Delhomme' 
and Gambolati and Volpi17 also adopted the Kriging method for the determination of aquifer 
parameters. In all these applications, Darcy's resistance equation was assumed to be valid. To the 
authors' knowledge, the only non-Darcy flow parameter identification has been performed by 
Edgell" and Peters.' Edgell used Gauss's least-squares method, whereas Peters adopted the 
random search method. 

In this paper an attempt is made to identify the non-Darcy flow parameters pertinent to three 
different flow systems. The first and second systems are applied in two-dimensional steady non- 
Darcy flow situations, whereas third system is used for the simulation of unsteady three- 
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dimensional non-Darcy flow. An integral method, a rectangular parametric grid with a linear 
calibration function and a constrained non-linear programming technique are the optimization 
methods used respectively for each system. 

THE ONE-DIMENSIONAL STEADY FLOW SYSTEM 

This system is concerned with the determination of the free surface elevation and the discharge 
through an earth dam having vertical faces and being composed of gravel. The appropriate 
variables and boundary conditions are illustrated in Figure 1. The combination of Forchheimer’s 
friction equation with the Dupuit-Forchheimer assumptions yields an equation of the form 

- dh/dx = au + bu2, (1) 
where h is the free surface height, u is the ‘average’ or ‘bulk’ velocity of the fluid in the x direction 
and a and b are the friction coefficients. Equation (1) together with the continuity equation 

d(uh)/dx = 0 (2) 
enable the elevation of the free surface to be determined. The discharge Q per unit width of the 
aquifer, which is defined as 

Q = uh, (3) 
duly satisfies the continuity equation. In order to account for the presence of the surface of seepage, 
the following empirical equation is included in the analysis: 

U, = m(h, - hd)n, (4) 
where he and hd are the water levels as defined in Figure 1, u, is the horizontal velocity within the 
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Figure 1. Boundary conditions and variable definition using a vertical cross-section of unconfined aquifer 
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aquifer at the downstream boundary and m and n are the surface of seepage equation parameters. 
Euler's finite difference method20*21 was used for the solution of the system which comprises 
equations (l), (2) and (4). Prior to its application, the parameters a, b, m and n were identified by 
examining a number of experimental free surface profiles and discharges. Gauss's least-squares 
method yielded the surface of seepage equation coefficients, the values of which are given in 
Figure 2. 

Edgelll* and PetersIg used a similar experimental procedure in order to evaluate the friction 
parameters a and b. Edge11 performed a least-squares analysis using equation (l), whereas Peters 
adopted a trial-and-error (or random search) method. Both approaches were based on a 
knowledge of the free surface slope defined by the term - dh/dx. Such methods, however, are error 
prone, since they can magnify even the slightest error in the water level data. When analysing a 
number of free surface curves, these techniques yield a unique set of a and b values for each curve. 
Therefore, to select representative a and b values, it is necessary either to average the coefficients 
obtained from each test or to adopt the ones that reappear consistently. 

It was the above consideration that led to the selection of an integral method for the 
determination of the coefficients. Integration of equation ( 1 )  between the limits x = 0 and x = L, 
where L is the length of the unconfined aquifer (Figure l), yields 

h, - he = a j I u d x  + b j 'u2dx.  0 

0.566 
U ~ Z  2 . 2 4 5 ~  ( he-hd) 

( h,-hd) ( c m )  

Figure 2. The correlation between the exit velocity (u,) and the seepage height (he - hd) at the downstream boundary 
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By rearranging equation (5) as 
f L  

it can be seen that the equation is linear and of the form 

Y= a + b X ,  (7)  

where Y and X are experimentally known quantities. The parameters a and b are subsequently 
determined by applying Gauss’s least-squares method to equation (7) .  Simpson’s rule is used for the 
evaluation of the integrals. The experimental results together with the fitted line and the numerical 
values of the friction coefficients are presented in Figure 3 .  One of the advantages of this technique 
is that each experimental curve, though not appearing explicitly in equation (6), is incorporated 
into the integrals and therefore every point in Figure 3 corresponds to one set of experimental data. 
It follows that the parameters thus obtained are representative of the complete set of experimental 
results. 

To establish the validity of the numerical values of the coefficients a, b, m and n, equations ( I ) ,  (2) 
and (4) were applied to the solution of the non-Darcy unconfined aquifer problem shown in 
Figure 1, using different boundary conditions. In all cases the numerical solutions compared very 
well with the experimental ones. A typically example is presented in Figure 4, where curve I is the 
experimentally determined free surface profile, curve I1 is the numerically computed free surface 
profile and curve 111 is the Dupuit parabola. 
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Figure 3. The correlation of the variables of equation (6 )  for the identification of the parameters a and b 
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Variable exit height 
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Figure 4. Comparison between numerical and experimental results for system I 
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THE TWO-DIMENSIONAL STEADY FLOW SYSTEM 

The second system is used for the simulation of the same non-Darcy unconfined aquifer situation 
as the previous one. In this case, however, the governing equation is two-dimensional and has the 
form 

where 4 is the total head of the fluid and is defined as 

4 = PIPY + z ,  (9) 

where p and p are the pore pressure and density of the fluid respectively and g is the gravitational 
constant. Also in equation (8) K is the hydraulic conductivity, which for non-Darcy flow may be 
expressed as22 

K = " 2bI - 1 + J( 1 + 31, 
where a and b are the Forchheimer friction parameters and I is the hydraulic gradient given by 

2 0 . 5  

I = [ ( g)2  + (g) ] 
The configuration of the flow domain and the relevant boundary conditions are presented in 
Figure 5. The solution of equation (8), subject to the boundary conditions of Figure 5, is achieved 
by means of triangular finite elements2' 

Although the usual way of establishing the numerical values of a and b is the permeameter test, in 
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Figure 5. The flow domain and boundary conditions relative to system I1 

this paper the actual discharge and free surface profile data are used for their determination. 
Initially, the G a u ~ s - N e w t o n ~ ~  method (or Marquardt's method as it is otherwise known) was 
incorporated into the finite element model. Although this method successfully minimized the water 
level error on which the objective function was based, however, it maximized the flow per unit 
width error. The reason for this performance lay firstly with the extra resistance to the flow which 
was offered by the permeable partitions (Figure 6), which held the gravel bank in a vertical position, 
and secondly with the small overall dimensions of the earth dam model (Figure 6). The outcome 
was a higher free surface elevation than would have otherwise occurred. The dimensions of the 
aquifer model were purposely designed to be modest, since the intention was to estimate the 
friction coefficients without the use of a permeameter, which for the case of gravel offers the well 
known difficulties of long length, large diameter and wall effect. It may be remarked that the first 
system, which was applied to the solution of the same flow problem as Figure 6, was able to 
account very well for the effect of the partitions on the flow phenomenon. 

Subsequently, the optimization of an objective function, J, ,  based on the flow per unit width 
prediction was adopted, since it was considered that the accurate determination of flow was more 
important than the determination of water levels. Hence 

where Q, is the experimental and Q, the computed discharge. Various techniques exist for the 
minimization of (12), some of which depend on the calibration function gradients which direct the 
solution towards the optimum point (i.e., where J ,  is a minimum), whereas others depend on 
function evaluations coupled with specific search patterns. The latter type is used in the present 
study. 

From the published24 Forchheimer friction coefficients, the following parametric constraints 
were chosen: 

0 . 0 0 7 ~  a d  0~019scm-' ,  (13) 

0007G b d 0 . 0 1 9 ~ ~ c r n - ~ .  (14) 
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Figure 6. The experimental aquifer model analysed by systems I and I1 

Figure 7. The parametric grid and the aquifer discretization in the case of system 11% calibration function contours; + minimum J ,  location; sop, = 0~00700s/cm;b,,, = 0.01308 s2/cm2; minJ, = 1.834cm2/s; J ,  = IQ,-Q,l 

As shown in Figure 7(a), the constrained area is divided into a rectangular grid system and at 
every node the calibration function is computed. In the finite element discretization of the flow 
domain, the experimental free surface is used as the upper boundary (Figure 7(b)). Thus the 
problem is reduced to one whereby only the flow per unit width is calculated using different 
coefficients. Having identified the node where J ,  is least, the optimum solution is then obtained by 
interpolating quadratically in one parametric direction at a time. If the minimum J ,  is found at the 
constraining boundaries, then only one parameter is optimized. 

The same analysis was applied to the complete set of experimental data. The friction coefficients 



158 I. M. GOODWILL AND C. KALLIONTZIS 

% 

$ 
i 19.- 

7 
0 

H 12.- 
n 

x 

5 

thus obtained are presented in Figure 8, where i&,, and denote the finally selected coefficients 
(mean values of a and b). Although parameter h showed little variation from the mean, parameter a 
varied quite strongly: in three cases the limiting value of 0.019 s cm- ' was obtained, whereas at the 
other extreme the limiting value of 0.007 s cm- ' frequently appeared as a solution. As expected, the 
mean parameters, when used for the solution of the complete flow problem, yielded very good 
discharge predictions and caused relatively poor free surface profiles to be produced in comparison 
with the experimental ones. 

4 
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THE THREE-DIMENSIONAL UNSTEADY FLOW SYSTEM 

The third system is used for the simulation of unsteady three-dimensional non-Darcy groundwater 
flow. The plan of the unconfined aquifer that was investigated together with the location of the 
observation wells (or depth gauges) Dl-D7 are presented in Figure 9. The equations for this system 
form part of a hybrid numerical mode120~2' which analyses three-dimensional groundwater flow 
by de-coupling it into a series of one-dimensional problems for the determination of the surface of 
seepage height at the downstream boundary and a two-dimensional problem for the determination 
of the free surface elevation within the flow domain. The boundary conditions for this flow problem 
(Figure 9) are: 

(1) Upstream boundary ABC (h, = h,(t)). 
(2) Downstream boundary GFED (kd = hd(t)) ,  where the surface of seepage is formed. 
( 3 )  Impermeable boundary AG (8h/8n = 0). 
(4) Impermeable boundary C D  (dh/tJn = 0). 

Linear isoparametric finite elements are used for the discretization of the unconfined aquifer 
(Figure 10). The following are the equations adopted for the determination of the surface of seepage 
at GFED:20,21 

d2h u(a + 2 hu) dh 
dx"- k dx (15) - - 

D 
3 6 9 12 15 18 21 
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Figure 9. Plan of the unconfined aquifer analysed by system 111; A, observation well location 

Y J  

Figure 10. Discretization of the aquifer using linear isoparametric finite elements; A, observation well location 
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and 
U, = m(he - hd)n ,  

which are the same as those of the first flow system. Equations (15) and (16) are applied along the 
'horizontal' lines which connect the upstream and the downstream boundaries. Euler's finite 
difference method was used for the solution of (15) and (16). Having calculated the height of the 
surface of seepage, the free surface elevation within the porous medium is then obtained from the 
continuity equation 

where E is the volumetric or absolute porosity of the porous medium and T is the transmissivity 
given by 

T="[-l+J(l+$;)](;)-', 2b 

where a and b are the non-Darcy friction parameters and dhlds is the hydraulic gradient, which 
may be expressed as 

2 0.5 

?= as [ (E)2 + (c> ] 
Equation (17) is solved by means of the finite element numerical technique. Further details of the 
model can be found elsewhere.20,21 

The parameters a,b,rn,n and E which occur in equations (15)-(18) were next optimized. 
Relatively accurate initial estimates of the coefficients were previously obtained from a small-scale 
two-dimensional experimental model. The algorithm that is developed involves a search for the 
minimum of a calibration (or objective) function C, defined as 

along directions of steepest descent. Thus the method may be classified as a non-linear 
programming technique. In equation (20) is the total simulation period, hexp and hcomp are the 
experimental and computed water levels and d is a depth gauge index. The range of the parametric 
solutions was limited by imposing suitable constraints. 

Initially, it was found that the minimization algorithm was very sensitive to the order in which 
the parameters were optimized. The alteration of the surface of seepage equation (equation (16)) 
coefficients yielded significant changes in the objective function C,. The converse resulted when the 
friction coefficients or the porosity values were optimized first. In the latter case, the parametric 
values, which acted as constraints, frequently appeared as the optimum solution. Also mini- 
mization was difficult to achieve when the appropriate parameters were optimized separately for 
each material (shown as M1 and M2 in Figure 9). 

Hence, as a first step, it was decided to optimize all the parameters simultaneously by using the 
formula 

PM?"" = (1  + S x sign,) x PMPld, (21) 
where PM, denotes a parameter (Table I), i is the parameter index ( i  = 1-10), S is a constant 
assumed to be the same for all parameters and sign, is the search direction and is given by 
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Table I 

Parameter index i 
(PMJ Symbol 

1 a ,  (s cm I )  

2 b,(s2cm-2) 
3 u2 (s cm- ') 
4 b , ( ~ ~ c m - ~ )  
5 m, (cm' s - ') 
6 n ,  (dimensionless) 
I m,(cml - " 2  s - , )  
8 n2 (dimensionless) 
9 E ,  (dimensionless) 
10 E~ (dimensionless) 

It was found that for all the parameters sign, was positive. Therefore equation (21) becomes 

PMY" = (1 + S)PMPld. (23) 

By varying S from 0 to 1 (Figure 11 (a)), an optimum value of S = 0.34 was obtained. In Figure 1 1 (a) 
this optimization step is referred to as iteration 1 and Table I1 shows the results of this step. (The 
subscripts of the symbols in Table I indicate the material number: 1 for M1 and 2 for M2.) Before 
proceeding to the second iteration, parametric constraints were imposed. The friction coefficients a 
and b were restrained as follows: 

(24) 

(25) 

0.007 < a < 0.030 s cm - 

0.007 < b d 0 . 0 3 0 ~ ~  cm-'. 

Using data from a small-scale earth dam constructed in the laboratory, the following limitations 
were imposed on m: 

1.50 d m < 7.50. 

At the completion of the first iteration, the values obtained for parameters 6, 8 , 9  and 10 were all 
higher than experimental evidence suggested was possible, For this reason they were fixed at the 
values given in Table 111. Thus the parameters used for iteration 2 are presented in Table 111. In the 
'Remarks' column of Table I11 the word 'variable' indicates that a parameter can be optimized, 
whereas the word 'fixed' indicates that a parameter remains unchanged during the optimization 
process. 

In iteration 3, parameters 5 and 7 were optimized simultaneously, since they control the free 
surface elevation at  the downstream boundary, while the other parameters were held constant. The 
value of sign, (equation (22)) was first determined and then a new coefficient S which minimized C, 
was evaluated. In iterations 4 and 5 a similar procedure was followed for parameters 1 and 3 and 2 
and 4 respectively. The final values are presented in Table IV and the calibration function 
minimization sequence is shown in Figure l l(b).  The shape of the response surface was not 
investigated in detail, but at no time during the optimization procedure was there any indication 
that local minima had been found within the region defined by the parameter constraints. 

(26) 



T 

( b )  
Number of iterations 

Figure 1 1 .  Calibration function minimization (a) during the first iteration and (b) for the total number of iterations 

Table I1 

Parameter values 
Parameter Before calibration After calibration 
number s=oo S = 0.34 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.01569 
0.00905 
0.02041 
0.00666 
2.40500 
062100 
2.24500 
0.5 6600 
0.45700 
0.45 100 

0.02102 
0.01213 
0.02735 
0.00892 
3.22270 
0.832 14 
3.00830 
0.75844 
0.61238 
0.60434 
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Table 111 

Parameter 
number 

Parameter 
values Remarks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.02102 
0.01213 
0.02735 
0.00892 
3.10000 
0.60000 
3.10000 
0.60000 
0.45700 
0.45 100 

Variable 
Variable 
Variable 
Variable 
Variable 
Fixed 
Variable 
Fixed 
Fixed 
Fixed 

Table IV 

Parameter values 
Parameter Initial Final 
number (iteration = 0) (iteration = 5) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.01569 
0.00905 
0.02041 
0.00666 
2.40500 
0.62100 
2.24500 
0.56600 
0.45700 
0.45100 

0.01682 
0.02062 
0.02188 
0.01 5 16 
4.96000 
0.60000 
4.96000 
0.60000 
0.45700 
0.45 100 

CONCLUSIONS 

In this paper an attempt was made to identify the non-Darcy groundwater flow parameters of three 
different flow systems. The optimization of the coefficients for the first system was successfully 
achieved using an integral approach. However, in the second system the presence of ‘noisy’ data 
caused a number of problems. As a result, the solution strategy was directed towards an 
identification scheme which minimized a discharge error criterion within a bounded parametric 
domain in order to obtain physically plausible friction parameters. The optimization of the 
coefficients for the third system was also difficult due to the hybrid simulation of unsteady three- 
dimensional groundwater flow. In particular, some parameters influenced the solution far more 
than others. As a consequence, an interactive algorithm was developed whereby the validity of the 
parameters could be examined by the modeller at the end of each minimization step. A new set of 
coefficients was subsequently determined using Cauchy’s steepest-descent method. 
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